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Abstract—We propose and investigate a compressive architec-
ture for estimation and tracking of sparse spatial channels in
millimeter (mm) wave picocellular networks. The base stations
are equipped with antenna arrays with a large number of
elements (which can fit within compact form factors because
of the small carrier wavelength) and employ radio frequency
(RF) beamforming, so that standard least squares adaptation
techniques (which require access to individual antenna elements)
are not applicable. We focus on the downlink, and show that
“compressive beacons,” transmitted using pseudorandom phase
settings at the base station array, and compressively processed
using pseudorandom phase settings at the mobile array, pro-
vide information sufficient for accurate estimation of the two-
dimensional (2D) spatial frequencies associated with the direc-
tions of departure of the dominant rays from the base station,
and the associated complex gains. This compressive approach
is compatible with coarse phase-only control, and is based on
a near-optimal sequential algorithm for frequency estimation
which approaches the Cramér Rao Lower Bound. The algorithm
exploits the geometric continuity of the channel across successive
beaconing intervals to reduce the overhead to less than 1%
even for very large (32 × 32) arrays. Compressive beaconing
is essentially omnidirectional, and hence does not enjoy the SNR
and spatial reuse benefits of beamforming obtained during data
transmission. We therefore discuss system level design considera-
tions for ensuring that the beacon SNR is sufficient for accurate
channel estimation, and that inter-cell beacon interference is
controlled by an appropriate reuse scheme.

Index Terms—Compressive, mm wave, 60 GHz, picocells, RF
beamforming

I. INTRODUCTION

The explosive growth in demand for wireless mobile data,
driven by the proliferation of ever more sophisticated hand-
helds creating and consuming rich multimedia, calls for orders
of magnitude increases in the capacity of cellular data net-
works [1]. Millimeter wave communication from picocellular
base stations to mobile devices is a particularly promising
approach for meeting this challenge because of two reasons.
First, there are huge amounts of available spectrum, enabling
channel bandwidths of the order of GHz, 1-2 orders of mag-
nitude higher than those in existing systems at lower carrier
frequencies. Indeed, channel bandwidths could potentially
increase even further with advances in transceiver technology
such as bandwidth/power consumption/linearity tradeoffs for
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Fig. 1: Picocellular network deployed along an urban canyon

ultra high-speed analog electronics, and speed/precision/power
consumption tradeoffs for analog-to-digital converters. Sec-
ond, the small carrier wavelength enables the realization of
highly directive steerable arrays, with a large number of
antenna elements, in compact form factors, thus significantly
enhancing spatial reuse. In this paper, we address fundamental
signal processing challenges associated with channel estima-
tion and tracking for such large arrays, placed within the
context of system design for a mm wave picocellular network.

While the signal processing and system design concepts
presented here are of rather general applicability, our numer-
ical results are for a particular setting that we feel has great
promise, as also discussed in some of our prior publications
[2], [3]. We propose to employ the 60 GHz unlicensed band
for base station to mobile communication in outdoor picocells:
an example urban canyon deployment is depicted in Figure
1 (discussed further in Section III). At the base station, we
consider very large 32× 32 arrays (such 1000-element arrays
are still only palm-sized at a carrier wavelength of 5 mm)
targeting the long term, as well as “moderately sized” 8 × 8
arrays (which can fit within an area of about half a square
inch) which are currently realizable. Note that 16-element
arrays were reported several years ago [4], and are already
deployed in existing 60 GHz products, while 32-element arrays
have been prototyped [5]. We assume that mobile devices are
equipped with smaller 4 × 4 antenna arrays. We focus on
downlink 60 GHz communication, with the goal of enabling
base station arrays to perform transmit beamforming towards
mobile devices, despite the challenges posed by mobility and
blockage (which occurs more easily at smaller wavelengths).
We do not count on reciprocity. The uplink could be a standard
LTE or WiFi link at lower carrier frequencies, used both for
uplink data (not modeled here) and feedback for enabling
spatial channel estimation at the transmitter.

Multiple antenna systems at lower carrier frequencies have
a relatively small number of elements, each with its own
radio frequency (RF) chain. This provides control of the
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Fig. 2: Channel sounding scheme: The transmitter repeats the
M transmit beacons L times so that receivers can measure the
channel vi,j corresponding to the ith setting at the transmitter
and the jth at the receiver.

individual baseband signals associated with each element, en-
abling sophisticated adaptation, including frequency-selective
spatiotemporal processing (e.g., per subcarrier beamforming
in OFDM systems). This approach does not scale when we
have a large number of antenna elements packed into a tiny
form factor. Instead, we consider RF beamforming, in which
a common baseband signal is routed to/from the antenna
elements, and we can only control the amplitude and phase for
each element. Indeed, we go even further, assuming that the
amplitude for each element is fixed, and that we can only apply
coarse four-phase control for each element. Standard least
squares array adaptation and channel estimation techniques,
which require access to the baseband signals associated with
each element, do not apply in this setting. Instead, we consider
here a compressive approach which exploits the sparsity of the
mm wave channel, so that relatively few measurements are
required for channel estimation despite the large number of
array elements.
Contributions: Our contributions are summarized as follows:
Architecture: We propose a novel architecture in which base
stations send out compressive beacons, with a different set
of pseudorandom phases used to transmit each beacon. Each
mobile measures the complex gains associated with each
beacon compressively, using pseudorandom control of the
phases of its receive array. The scheme, described in more
detail later, is depicted in Figure 2: the base station sends M
beacons, repeated L times, which permits the mobile to use
L different settings of its own array to measure the associated
complex gains. Each mobile feeds back appropriately chosen
functions of its measurements to the base stations on the uplink
(which can be a standard LTE link). Each base station use this
information to estimate and track the dominant paths to each
mobile that it receives feedback from.
Algorithms: For the regular two-dimensional (2D) arrays con-
sidered here, directions of arrival/departure map to 2D spatial
frequencies. The base station estimates the spatial frequencies
to each mobile using a simple sequential algorithm, shown

to be near-optimal (in terms of approaching the Cramer-Rao
Bound) in related publications. The algorithm exploits the
geometric continuity of the channel across successive beacon-
ing intervals to reduce the required number of compressive
measurements.
System Design: While we do not provide a complete system
design centered around our compressive strategy, we do pro-
vide preliminary results addressing some of the most important
issues. We show that the overhead incurred by our beaconing
scheme is very small (less than 1%). Furthermore, while com-
pressive beacons are essentially omnidirectional (in contrast
to the highly directive beams employed for communication),
the link budget suffices for accurate channel estimation, and a
simple beacon reuse strategy suffices to control inter-beacon
interference across picocells.

II. BACKGROUND AND RELATED WORK

There is a significant body of recent literature on the poten-
tial for mm wave communication for next generation mobile
cellular networks [6], [7], [8], [9], [10], [3]. For these outdoor
settings, most of the attention has focused on bands other than
60 GHz; for example, [10] studies blockage probabilities and
achievable throughput based on measurements in the 28, 38,
71-76 and 81-86 GHz bands. However, as pointed out in our
prior work [3], 60 GHz has immense potential at the relatively
short ranges of interest in urban picocells, with the oxygen
absorption characteristic of this band only having a marginal
impact on the link budget (e.g., only 1.6 dB at 100m). While
studies such as [7], [8], [9], [10] focus on coarse-grained
channel statistics (and their implications on system design and
performance), our focus here is on signal processing for fine-
grained channel estimation.

We assume that the channel is well described by a relatively
small number of discrete rays with delays and angles of
arrival/departure taking values in a continuum. The key contri-
bution of this paper is to provide a super-resolution framework
for estimating and tracking these rays, with model-based
estimation allowing us to go beyond (spatial) bandwidth based
resolution limits. To the best of our knowledge, the existing lit-
erature on mm wave measurements does not attempt to super-
resolve channels in this fashion, hence we do not know, for
example, whether the continuous power-delay profiles reported
in [10] are consistent with a parsimonious channel model such
as ours. However, preliminary experimental results [11], which
use compressive measurements to successfully recover power-
angle profiles for a controlled experiment (a small number
of reflectors in an anechoic chamber), indicate that a simple
ray-based model like ours may well suffice. Validating this
assertion would require application of the more sophisticated
compressive estimation techniques discussed here, as opposed
to the standard basis pursuit algorithms employed in [11]. Note
that existing models for simulation-based evaluations, such as
the channel models standardized for IEEE 802.11ad indoor
60 GHz channels, typically assume more complex models
which are variants of the Saleh-Valenzuela model, with a
number of clusters, each consisting of multiple closely spaced
rays. Such cluster-based models could be motivated by the
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roughness of reflecting surfaces such as walls, but they have
not been experimentally demonstrated. While these issues fall
beyond the scope of the present paper, which aims to make a
fundamental contribution to signal processing for sparse spatial
channels, a sustained effort in measurement-based validation
of our model and approach is a critically important topic for
future work.

An alternative approach to spatial channel estimation with
RF beamforming is exhaustive search, but its overhead does
not scale for the large arrays of interest to us. Hierarchical
codebook search is more efficient [12], [13], [14], [15], but
it cannot guarantee overhead reduction in a multiuser setting.
Furthermore, the multi-resolution beam patterns used in hier-
archical search require more than one RF chain [15], and these
methods only provide binned estimates of path directions.
In contrast, the method presented here provides fine-grained
estimates while using only a single RF chain.

A hardware enhancement to pure RF beamforming as
considered here (where a single RF chain serves all antenna
elements) is to employ hybrid analog-digital beamforming,
with a number of RF chains smaller than the number of
antenna elements. We may term this an array of subarrays,
with RF-level control for subarrays, and digital processing
of subarray outputs. Such an approach is used in [15], [16]
for spatial channel estimation. Our work shows, however,
that a single RF beamformed array suffices for this purpose.
Of course, arrays of subarrays are certainly required for
more advanced functionalities such as multiuser MIMO [17],
spatial multiplexing [18], [19], [20], [21], [22], and spatial
diversity [20], [23], [24]. Integrating the compressive approach
proposed in this paper within an array of subarrays architecture
is an interesting area for future work.

The present paper builds on our prior conference papers on
compressive array adaptation [25], [2], but goes well beyond
them in several respects. In addition to a more detailed devel-
opment of the analytical framework underlying our estimation
algorithm, we now explicitly model the receive array at the
mobile, which requires a generalization of the beaconing and
feedback strategy. We also address system level design for
compressive tracking in far greater detail, discussing link
budget and overhead, and accounting for inter-cell beacon
interference. Our initial work on compressive array adaptation
[25] subsequently led to a general framework for compressive
estimation [26], [27], which identify the isometries required
to preserve fundamental bounds such as the Ziv-Zakai (ZZB)
and Cramer-Rao (CRB), and use the relationship between
these bounds to provide criteria for determining the minimum
number of compressive measurements required to preserve ge-
ometry and to permit accurate parameter estimation based on
a signal corrupted by an AWGN. We now adapt these general
results here to develop guidelines for system-level parameter
choices. We have also pointed out recently [28], [29] that the
ideas behind our algorithm apply to the fundamental problem
of sparse modeling using a mixture of sinusoids, which has a
range of applications, including super-resolution in the context
of radar and (time domain) multipath channel estimation.
The setting in the present paper is more complicated than in
[28], [29] due to the use of compressive weights at both the

transmitter and the receiver, but there are a common set of
key ideas, including orthogonal matching pursuit with Newton
refinement, and a Constant False Alarm Rate (CFAR) stopping
criterion.

III. SYSTEM MODEL

Given the high demand for wireless data in dense urban
environments, we focus our modeling and performance eval-
uation on the urban canyon setting depicted in Figure 1, with
streets flanked by buildings on both sides. Picocellular base
stations are deployed on lampposts in a zig-zag pattern on both
sides of the street. We consider mm wave transmission on the
downlink (for beaconing and downlink data) and LTE or WiFi
at lower carrier frequencies on the uplink (for feedback and
uplink data). In terms of channel estimation and tracking, this
could be viewed as a worst-case assumption, since two-way
transmission on the same mm wave band could potentially be
exploited using channel reciprocity. For the east-west street
shown, each base station has two “faces,” facing east and
west, respectively. Each face can have multiple antenna arrays,
but for simplicity, we consider a single antenna array for
each face, used for both compressive beaconing and downlink
data communication. Mobile stations are modeled as either
pedestrians walking along sidewalks, or cars moving along
the street.

In our simulations, we model K = 4 dominant paths from
base station to mobile in our simulations: the line of sight
(LoS), and the single bounce reflections from the ground
or the side walls. Some of these paths may be blocked by
obstacles (diffraction around obstacles is limited for small
carrier wavelengths). We ignore multiple bounces, since such
paths get attenuated significantly, especially because each
bounce sees a smaller angle of incidence than a typical single
bounce. However, our compressive estimation algorithm does
not use the preceding assumptions on number of dominant
paths as prior information, and automatically discovers and
tracks paths.

For a regular d-spaced square N1D × N1D antenna array
and a point transmitter in the far-field, the channel seen by
the array is a mixture of 2D sinusoids, each corresponding to
a propagation path, and is given by

hm,n =

K∑
k=1

gke
j(ωx,km+ωz,kn), gk ∈ C, 1 ≤ m,n,≤ N1D,

where gk is the propagation gain of the k-th path, ωk =
(ωx,k, ωz,k) are the spatial frequencies corresponding to the
k-th path (w.l.o.g. we have assumed that the square array
is placed in the x-z plane, with its sides aligned to the
coordinate axes) and hm,n refers the channel seen by the
m,n-th antenna element,. The spatial frequencies of the k-
th path are given by ωx,k = 2π(d/λ) sin θk cosφk and ωz,k =
2π(d/λ) sin θk sinφk, where d denotes the array spacing, λ the
carrier wavelength and (θk, φk) the inclination and azimuthal
angles of the k-th path relative to x − z plane. We vectorize
the 2D sinusoid

[
ej(ωxm+ωzn), 0 ≤ m,n ≤ N1D − 1

]
and

denote the resulting N2
1D long vector by x(N1D,ω), where
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ω = (ωx, ωz) is the frequency of the 2D sinusoid. Vectorizing
[hm,n, 1 ≤ m,n ≤ N1D] in an identical manner gives us

h =

K∑
k=1

gkx(N1D,ωk).

Now, consider a base station transmitter with a regularly
spaced 2D array of size Nt,1D×Nt,1D, and a mobile receiver
with a regular 2D antenna array of size Nr,1D × Nr,1D. Let
H denote the corresponding N2

t,1D × N2
r,1D channel matrix.

Denoting by hi the ith row of this matrix, hTi is the response of
the receive antenna array to the ith transmit antenna. Denoting
x (Nt,1D,ω) by xt (ω) and x (Nr,1D,ω) by xr (ω), under the
far-field assumption, it can be shown that

H =

K∑
k=1

gkxt
(
ωtk
)
xTr (ωrk) , gk ∈ C. (1)

Since we know the array geometries (in this case, a regu-
larly spaced 2D array), an estimate of the N2

t,1D × N2
r,1D

MIMO channel matrix H can be efficiently arrived at by
estimating the spatial frequencies and the associated gains:
{(gk,ωtk,ωrk) , k = 1, . . . ,K}. Such a parametric approach is
far more efficient that direct estimation of individual entries
of H, and enables us to drastically reduce the number of
measurements required.

IV. COMPRESSIVE CHANNEL ESTIMATION

We now describe our compressive approach for spatial
channel estimation, which consists of a channel sounding
strategy and an estimation algorithm which allows a base
station to estimate the propagation gains {|gk|} and the spatial
frequencies {ωtk} in parallel for all mobiles in the picocell.

A. Channel sounding

The basestation sounds the channel using M compressive
beacons. Each beacon is a known signal sent using a different
set of transmit weights. The weights are chosen uniformly and
independently at random from a small set of coarse phase
shifts (for e.g. from the set {±1,±j}, where j =

√
−1).

We may therefore view each beacon as being transmitted
from a different “virtual antenna” with a quasi-omnidirectional
pattern. Each of the M transmit beacons are repeated L times
by the basestation (see Figure 2). For each of these M transmit
beacons, a mobile receiver employs L “virtual antennas” to
measure the channel response, using receive weights chosen
uniformly at random from {±1,±j}. Let y(m,n) denote
the response at the (m,n)th receive element due to a given
transmit beacon. Letting b(m,n, l) ∈ {±1,±j} denote the
weight for (m,n)th receive element for the lth virtual receive
antenna, the response seen by the lth virtual receive antenna
is given by

r(l) =
∑

1≤m,n≤Nr,1D

b(m,n, l)× y(m,n), 1 ≤ l ≤ L. (2)

These measurements are used to construct the M×L Multiple
Input Multiple Output (MIMO) “virtual channel” matrix V
between the virtual transmit and receive antennas. Note that we

do not require that the base station know the receive weights
used by the mobile, or that the mobile know the transmit
weights used by the base station.

Denoting the vectorized version of weights of the i-th virtual
transmit antenna by ai (a vector of shape N2

t,1D × 1) and that
of the j-th virtual receive antenna by bj (N2

r,1D × 1), the
i, j-th element of V (the channel between the (i, j)-th virtual
transmit-receive pair) is given by vi,j = aTi Hbj . Letting A =
[a1 . . . aM ]T and B = [b1 . . . bL]T , it is easy to see that
V = AHBT . Using (1), we have that

V =

K∑
k=1

gk
(
Axt

(
ωtk
))

(Bxr (ωrk))
T
. (3)

The channel measurements are perturbed by i.i.d measurement
noise, and are given by

yi,j =
√
Pevi,j + zi,j , zi,j ∼ CN (0, σ2),

where Pe is the per-element transmit power. Letting Y and Z
denote M ×L matrices with their i, j-th entries given by yi,j
and zi,j respectively, the “measured virtual channel” is given
by

Y =
√
PeV+Z =

√
Pe

K∑
k=1

gk
(
Axt

(
ωtk
))

(Bxr (ωrk))
T

+Z.

(4)

B. Feedback strategies

Our goal is to track the mm-wave spatial channel as
seen from the basestation, described by the parameters P =
{(|gk| ,ωtk) , k = 1, . . . ,K}. To this end, every mobile in the
picocell needs to feed back a portion of the measured virtual
channel Y to the basestation. From (4), we see that the
information regarding the spatial channel as seen from the
basestation, given by P , is available in the column space of
Y. Building on this observation, we propose two feedback
strategies:
(i) The receiver feeds back the entire matrix Y.
(ii) A more elaborate strategy involves feeding back Q ≤ L

strongest left singular vectors of Y scaled by their corre-
sponding singular values. i.e., if Y =

∑L
l=1 σlulv

H
l with

σ1 ≥ σ2 ≥ · · · ≥ σL ≥ 0, the receivers feed back D ≡
[σ1u1 · · · σQuQ]. This strategy identifies the Q-dimensional
subspace of the column space of Y with maximum energy.

V. ESTIMATION ALGORITHM

We now present an algorithm to estimate the parame-
ters {(|gk| ,ωtk) , k = 1, . . . ,K} characterizing the mm-wave
channel as seen from the basestation. The same algorithm
applies for both forms of feedback discussed in Section IV-B:
the entire measured virtual MIMO matrix Y or the dominant
weighted left singular vectors D.

The lth column of Y is given by

yl =

K∑
k=1

hk,lAxt
(
ωtk
)

+ zl, l = 1, . . . , L (5)
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where zl ∼ CN
(
0, σ2IM

)
denotes the l-th column of Z

and hk,l =
√
Pegkb

T
l xr (ωrk). We assume the weight se-

quence {bl} used to construct the receive virtual antennas at
the receive antenna array is not available at the transmitter,
and hence cannot jointly estimate ωtk and ωrk. However,
since {bl, l = 1, . . . , L} were picked in an i.i.d manner,
we have that {hk,l, l = 1, . . . , L} are i.i.d realizations of a
random variable with E |hk,l|2 = PeE

∣∣gkbTl xr (ωrk)
∣∣2 =

PeN
2
r,1D |gk|

2. This allows us to estimate |gk|2 as follows:

Pe |ĝk|2 =
(

1
/(
LN2

r,1D

)) L∑
l=1

∣∣∣ĥk,l∣∣∣2 .
From here on, in Section V, we use the notation ωk to refer to
ωtk and x(ωk) to refer to Axt(ω

t
k). Thus, the measurements

can be written as

yl =

K∑
k=1

hk,lx (ωk) + zl, l = 1, . . . , L. (6)

We now provide an algorithm to estimate {ωk, {hk,l}}.

A. Single path

We first present an algorithm for estimating a single path
K = 1, which forms the basis for our sequential estimation
algorithm for K > 1. Omitting the path index k in (6), we
have

yl = hlx (ω) + zl, l = 1, . . . , L.

Given that {zl} are independent realizations of CN
(
0, σ2IM

)
,

the maximum likelihood (ML) estimates of ω, {hl} are given
by:

ω̂,
{
ĥl

}
= arg min

ω,{hl}

L∑
l=1

‖yl − hlx (ω)‖2 . (7)

For any ω, the optimal hl-s are given by least-squares esti-
mates:

h?l (ω) = 〈x (ω),yl〉
/
‖x (ω)‖2 (8)

where 〈x, y〉 denotes xHy. Plugging into (7), the ML estimate
of ω is given by:

ω̂ = arg max
ω

1

‖x (ω)‖2
L∑
l=1

|〈x (ω) ,yl〉|2 (9)

and the ML estimate of hl is given by h?l (ω̂). We employ a
two-step algorithm to arrive the ML estimates: a “detection”
phase followed by a “refinement” phase.
Detection phase: Using M two-dimensional FFT computa-
tions, we precompute x(ω) for frequencies of the form ω ∈
Φ ≡ {(2πi/T, 2πj/T ) , 0 ≤ i, j ≤ T − 1} , T = RN1D,t,
where R is the oversampling factor. We pick the frequency
ω̂ from Φ which maximizes (9). The corresponding gains are
given by ĥl = h?l (ω̂). We remove the contribution of the
newly detected sinusoid from the measured channel response
and this residual measurement is given by

rl = yl − ĥlx (ω̂) . (10)

(This residue is used for sequential detection for K > 1, as
discussed shortly.)
Refinement phase: Our estimate from the detection phase is
restricted to the discrete set Φ and consequently we do not
expect ω̂ to be equal to the ML estimate given by (9) (where
the maximization is over [−2πd/λ, 2πd/λ]2 with d being the
spacing between transmitter antennas). However, if we make
the grid fine enough, the best estimate of ω in Φ is expected
to be close enough to the optimal solution to allow refinement
via local optimization. In order to do this, we first fix the
gain estimates {ĥl} and refine only the estimate of the spatial
frequency ω by seeking the minimizer of the ML cost function

C(ω) =

L∑
l=1

∥∥∥yl − ĥlx (ω)
∥∥∥2

in the neighborhood of the current estimate ω̂ using the
Newton method. This involves evaluating the gradient vector
G (ω) and the Hessian matrix H(ω) of C(ω) at the current
estimate ω̂. The corresponding expressions are given by:

Gi(ω) =
∂C(ω)

∂ωi
= −2

L∑
l=1

<
{〈

rl, ĥl
∂x(ω)

∂ωi

〉}
,

Hij(ω) =
∂2C(ω)

∂ωi∂ωj
= −2

L∑
l=1

<

{〈
rl, ĥl

∂2x(ω)

∂ωi∂ωj

〉
−

∣∣∣ĥl∣∣∣2〈∂x(ω)

∂ωi
,
∂x(ω)

∂ωj

〉}
, 1 ≤ i, j ≤ 2

where ω = [ω1, ω2]. {rl}-s are the residual measurements
given by (10). The Newton update for ω̂ is

ω̂ ← ω̂ −H−1 (ω̂)G (ω̂) . (11)

We follow this up by updating our estimates
{
ĥl

}
by plugging

the new value of ω̂ in (8), i.e.,

ĥl ← h?l (ω̂) = 〈x (ω̂),yl〉
/
‖x (ω̂)‖2 (12)

and modifying the residues ({rl}) accordingly using (10). The
algorithm alternates between the updates in (11) and (12) for
a few iterations.

B. Multiple paths

We now build on the preceding single path algorithm
for the general setting of K ≥ 1. Suppose that our cur-
rent estimate of the sinusoids/paths is given by PK ={(

ω̂k, {ĥk,l}
)
, k = 1, . . . ,K

}
. The residual measurements

corresponding to a set of estimated parameters P is given by:

vl(P) = yl −
∑

ωk,{hk,l}∈P hk,lx (ωk) .

Detect a new path: Assuming that the measurements yl are
given by the current residue vl(Pq) (corresponding to the
q detected paths), we use the single path algorithm in Sec-
tion V-A to detect and refine a new sinusoid (ω̂q+1, {ĥq+1,l}).
Let Pq+1 denote the new set of estimated parameters Pq ∪
{(ω̂q+1, {ĥq+1,l})}.
Refine existing paths: Once we add this new path, we refine
the parameters of all q + 1 sinusoids in Pq+1 one by one.
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Consider the parameters (ω̂k, {ĥk,l}) of the k-th sinusoid.
We use the refinement algorithm in Section V-A to refine
(ω̂k, {ĥk,l}) by assuming that the measurements yl are given
by the residual measurements after excluding the sinusoid of
interest. i.e, vl(Pq+1 \ {(ω̂k, {ĥk,l})}). Sinusoids are refined
in a round robin manner, and the process is repeated for a few
rounds: 1→ 2→ · · · → (q + 1)→ 1→ · · · → (q + 1).
Stopping criterion: The algorithm terminates when the
residues {vl(Pq)} after refinement satisfy:

max
ω∈DFT

1

‖x (ω)‖2
L∑
l=1

|〈x (ω) ,vl(Pq)〉|2 ≤ τ, (13)

with the threshold τ given by
σ2γ−1

(
L,Γ(L)(1− Pfa)

1/N2
1D,t

)
where γ−1(S, y)

is the inverse of incomplete gamma function
γ(S, x) with respect to integral limit x and
DFT = {(2πi/N1D,t, 2πj/N1D,t) : 0 ≤ i, j ≤ N1D,t − 1}.
This choice of τ corresponds to a Constant False Alarm
Rate (CFAR) test (the false alarm rate being Pfa) for whether
the residual measurements {vl(Pq)} can be explained by
another path. In arriving at this expression for τ we make two
assumptions: (i) channel sounding is not compressive: i.e,
A = IN2

1D,t
and (ii) new paths correspond to specific beam

orientations given by ω ∈ DFT. However, our simulation
results show that, this is a good approximation for our case
with compressive measurements and continuous values of
beam directions. We refer the reader to Appendix A for
details on the stopping criterion.

C. Tracking

We sound the channel often enough so that between any two
successive channel estimation cycles, the geometry of the mm-
wave channel, given by the spatial frequencies {ωk} of the
paths, does not change “significantly,” even if the path gains
{gk} do. This ensures that angle of departure estimates from
the prior sounding round do not become stale over the course
of the communication phase during which they are needed
for beamforming purposes. For example, if we do not wish to
tolerate a beamforming loss of 3dB or more, then our estimate
from the previous round ω̂ should be close enough to the
current ω so that

|〈x (ω̂),x (ω)〉|2
/
‖x (ω)‖2 > 0.5

over the entire communication phase. This condition is met if
‖ω − ω̂‖∞ < 0.5× (2π/Nt,1D ). Therefore, the estimates of
spatial frequencies from the previous sounding round are good
approximations of their current true value (within a DFT spac-
ing of 2π

Nt,1D
). We exploit this by using {ω̂k, k = 1, . . . ,K}

from the prior round to initialize our algorithm (as opposed to
using the empty set {}). We do this by constructing the matrix
X = [x (ω̂1) . . . x (ω̂K)] and setting ĥk,l to be the (k, l)-th
entries of

(
XHX

)−1
XHY, where Y = [y1 . . . yL]. We

refine all parameters in PK = {(ω̂k, {ĥk,l}), k = 1, . . . ,K}
using the refinement algorithm in Section V-B before proceed-
ing to seek for new paths using the algorithm in Section V-B.

Deleting weak paths: Paths estimated in prior rounds may not
be viable at the current time instant (e.g, because of blockage).
Therefore, we need means to remove such stale paths. We use
the stopping criterion (13) as a means to delete weak paths.
If deleting the path under question (say k) and optimizing
other parameters Pk,opt ← Refine

(
P \ (ω̂k, {ĥk,l})

)
using

our refinement algorithm results in residual measurements
{vl(Pk,opt)} that can be explained by noise (i.e., satisfies (13)),
we delete the path permanently. Otherwise we keep the path.

VI. PROTOCOL PARAMETER CHOICES

In this section, we give a principled approach to choosing
parameters of the compressive channel estimation protocol,
namely the number of unique transmit beacons M , the number
of receive measurement weights L and the minimum effective
Signal to Noise Ratio (SNR) needed for channel estimation,
which we use to choose the sounding bandwidth Ws. We then
turn to the question of how frequently the channel has to be
sounded. In Section VIII, we take two scenarios and apply this
recipe to arrive at system level parameters for the protocol.

A. Number of compressive transmit beacons

Classical compressive sensing aims to reconstruct signals
which are sparse in a discrete basis, based on a small number
of projections. In order for reconstruction to be successful,
these projections must preserve the underlying geometry [30].
In [27], these ideas are extended to compressive estimation,
in which a small number of projections are used to estimate
continuous-valued parameters.

We now translate these concepts to our present context.
Our goal is to estimate the spatial frequencies {ωtk} from
measurements of the form

yl =

K∑
k=1

hk,lAxt
(
ωtk
)

+ zl, l = 1, . . . , L.

The algorithm in Section V aims to estimate parameters
{hk,l,ωk} by minimizing the ML cost function:∑L

l=1

∥∥∥yl −∑K
k=1 ĥk,lAxt (ω̂k)

∥∥∥2
=
∑L
l=1

∥∥∥A×∑K
k=1

(
hk,lxt (ωtk)− ĥk,lxt (ω̂tk)

)
+ zl

∥∥∥2 ,
where

{
ĥk,l, ω̂

t
k

}
refer to our estimates of {hk,l,ωtk}. If the

compressive measurement matrix A ensures that∥∥∥A×∑K
k=1

(
hk,lxt (ωtk)− ĥk,lxt (ω̂tk)

)∥∥∥2 (14)

≈M
∥∥∥∑K

k=1

(
hk,lxt (ωtk)− ĥk,lxt (ω̂tk)

)∥∥∥2 , ∀hk,l, ĥk,l,
for relevant ({ωk}, {ω̂k})-pairs, the cost structure of the
estimation problem is roughly preserved. Therefore, estimation
using compressive measurements is similar to estimation with
all N2

t,1D measurements (except for a reduction in effective
SNR, given by M/N2

t,1D) [27].
We now state an isometry property relevant for our purpose.

For some fixed ε, the matrix Φ ∈ Cm×p is said to enjoy the
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s-isometry property for the basis B (of size p × n) if there
exists a constant C > 0 such that

C(1− ε) ≤ ‖ΦBu‖2
/
‖Bu‖2 ≤ C(1 + ε),

for all s-sparse u in Cn. It can be shown using the celebrated
Johnson-Lindenstrauss Lemma (JL Lemma) [31] (with argu-
ments similar to those in [30]) that if m = O(sε−2 log n),
a randomly picked Φ (with elements drawn from proper
distributions, e.g., Uniform{±1,±j} [27], [31]) satisfies this
isometry property with high probability.

In order to provide a concrete definition of geometry
preservation in our setting, we consider a discretized version
of the problem, when spatial frequencies are restricted to
an oversampled DFT grid G of size R = O(N2

t,1D). The
condition (14) reduces to a 2K-isometry property of the
measurement matrix A relative to the basis X, where X is the
N2
t,1D×R matrix with its columns given by {xt (ω) : ω ∈ G}.

We can now apply the preceding isometry property to conclude
that, when the number of unique transmitter beacons scales
as M = O

(
Kε−2 logR

)
= O

(
Kε−2 logNt,1D

)
, then the

2K-pairwise isometry criterion w.r.t the basis X is met by
the randomly picked sounding matrix A (it can be shown
that C = M for our choice of scale), thereby ensuring that
the geometry of the spatial frequency estimation problem is
preserved.

While the preceding calculations give order estimates for
the number of measurements M required, in order to pro-
vide numerical values for our protocol design, we employ
simulations. We consider the example of the 32 × 32 trans-
mitter array and plot the maximum and minimum values of
(1/M) ‖AXu‖2

/
‖Xu‖2 from 5 × 106 random realizations

of a 2K = 8-sparse u (which represent different realizations
of K = 4 paths and their corresponding potential estimates)
in Figure 3 using the 64-times oversampled DFT grid as the
choice of basis X. We see that this ratio is within [−5, 3] dB
when M ≥ 30. This illustrates that for estimating K = 4 paths
using a 32×32 array, measuring the response corresponding to
M = 30 random beacons approximates the effect of measuring
all 32× 32 = 1024 antenna elements individually.

B. Number of compressive receive measurements

While we do not track {ωrk, k = 1, . . . ,K}, the spatial
frequencies at the receiver, we need to ensure that the set of
measurements made at the receiver have sufficient informa-
tion to estimate transmitter spatial frequencies. Suppose that
‖Bxr (ωrk)‖ ≈ 0, it follows from hk,l = gk

√
Peb

T
l xr (ωrk)

that all L measurements {yl, 1 ≤ l ≤ L} will have very small
contributions from the k-th path. i.e., |hk,l| ≈ 0, 1 ≤ l ≤ L.
To see this observe that:
L∑
l=1

|hk,l|2 = Pe |gk|2
L∑
l=1

∣∣bTl xr (ωrk)
∣∣2 = Pe |gk|2 ‖Bxr (ωrk)‖2 .

(15)
Again, restricting the receive spatial frequencies to an over-
sampled DFT grid G of size R = O(N2

r,1D), it can be shown
that for L = O (logR) = O (logNr,1D), ‖Bxr (ω)‖2 ≈
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Fig. 3: Maximum and minimum values of
‖AXu‖2

/
(M ‖Xu‖2) for different values of M , the

number of transmitter beacons, across 5 × 106 random
realizations of 8-sparse u. The basis X corresponds to the
responses for a 32 × 32 array evaluated uniformly over a
R = 64× 322-sized grid
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Fig. 4: Maximum SNR degradation
minω ‖Bxr(ω)‖2

/
(L ‖xr(ω)‖2) for the most favorable

realization (from 104 runs) of an L × N2
r,1D matrix B with

Nr,1D = 4

L ‖xr (ω)‖2 = LN2
r,1D w.h.p. This ensures that

L∑
l=1

|hk,l|2 ≈ PeLN2
r,1D |gk|

2 w.h.p,

thereby capturing power along the k-th path. We perform
computations for the maximum power lost across spatial
frequencies when using a 4 × 4 array and plot the results in
Figure 4. This shows that around 5 carefully chosen projec-
tions (we pick the best measurement matrix from 104 random
instances) suffice to ensure that SNR degradation (relative to
the nominal value of L) is no greater than 3dB for a 4 × 4
receive array.

C. SNR for successful estimation

The preceding criteria delineate the regime in which the
geometry of the estimation problem is preserved approxi-
mately. We now turn to another factor which affects estimation
performance, namely the SNR. Consider measurements of the
form

ym,n = ej(ω1m+ω2n+φ) +zm,n, 0 ≤ m,n ≤ Nt,1D−1, (16)
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Fig. 5: ZZB threshold SNR SNRth for estimating the frequency
of a Nt,1D ×Nt,1D sinusoid as a function of Nt,1D

where zm,n are i.i.d. CN (0, σ2) and spatial frequencies ω1, ω2

and phase φ are parameters to be estimated. The Cramér
Rao Bound[32] (CRB) for estimating ω1 from measurements
(16) is given by C(σ2) = 6

/(
SNR

(
N2
t,1D − 1

))
, where

SNR = ‖xt(ω)‖2
/
σ2 = N2

t,1D

/
σ2 (same expression holds

for ω2). Assuming an uniform prior over [0, 2π)3 for the
parameters (ω1, ω2, φ), the Ziv Zakai Bound (ZZB) with
periodic distortion[33] for estimating ω1 evaluates to:

Z(SNR) =

∫ π

0

Q

(√
SNR

(
1−

∣∣∣∣ sin (Nt,1Dh/2)

Nt,1D sin (h/2)

∣∣∣∣)
)
hdh.

An indicator of the SNR needed for successful estimation
is the convergence of the ZZB to the CRB[27]. We use
the SNR beyond which the ZZB is within 0.1dB of the
CRB as a measure of this convergence. We plot this ZZB
threshold SNR for different values of Nt,1D in Figure 5. e.g,
SNRth = 16.04dB for an 8 × 8 array and SNRth = 16.13dB
for a 32× 32 array.

The total energy Etot corresponding to the k-th path col-
lected across the ML measurements {yl, 1 ≤ l ≤ L} is given
by:

Etot =
∥∥Axt

(
ωtk
)∥∥2 × L∑

l=1

|hk,l|2 .

Using (15) in the above, we have that

Etot =
∥∥Axt

(
ωtk
)∥∥2 ‖Bxr (ωrk)‖2 Pe |gk|2

≈MLN2
t,1DN

2
r,1DPe |gk|

2

= MLPN2
r,1D |gk|

2
,

where P = N2
t,1DPe is the total transmit power supplied to the

Nt,1D×Nt,1D antenna array. The above approximation holds
when M and L satisfy the preceding geometry preservation
criteria in Sections VI-A and VI-B respectively. The effective
SNR of the i-th path is given by SNReff = Etot

/
σ2 . It is

important to note that the per-measurement noise variance σ2

is given by σ2 = N2
r,1Dσ

2
e , where σ2

e is the noise variance
per antenna element. Assuming no interference (which we
account for in Section VII-D), σ2

e = N0Ws with Ws denoting
the sounding bandwidth and N0 the thermal noise floor. The
reason for the scale factor N2

r,1D in the expression for σ2 is the
following: Our measurement process consists of multiplying

the received signal at each antenna (of which there are N2
r,1D)

by phasors b(m,n, l) ∈ {±1,±j} and adding the resultant
signal (as per (2)). Since thermal noise seen by the N2

r,1D

isolated receive antennas are independent random variables,
we have that σ2 = N2

r,1D × (N0Ws). Therefore, the effective
SNR of the i-th sinusoid is given by:

SNReff = MLP |gk|2
/

N0Ws .

This must exceed the ZZB threshold SNRth for successful
estimation. Noting that ML/Ws is the time taken for channel
sounding, the ZZB threshold SNRth gives us the means to
evaluate the minimum overhead in time to estimate the channel
for a given path gain |gk|2:

Time taken = ML/Ws ≥ SNRth N0

/
P |gk|2 (17)

The size of the picocell gives us a lower bound on |gk|2 and we
later use this to guide us in choosing the sounding bandwidth
Ws using (17).

D. Sounding rate

We round off the discussion on choice of protocol pa-
rameters by giving a rule of thumb for the rate/frequency
fB at which the spatial channel {ωk} needs to be reesti-
mated. We use the estimated spatial frequency ω̂ for beam-
forming purposes in the time period between two channel
sounding rounds (communication phase sandwiched between
consecutive sounding phases; see Figure 7). Following the
discussion in Section V-C, we have that if ‖ω(t)− ω̂‖∞ <
π/Nt,1D throughout the communication phase, where ω(t)
denotes the true spatial frequency and ω̂ the estimate from
the prior sounding round, then the loss in SNR, given by
‖xt(ω(t))‖2

/
〈xt (ω̂),xt (ω(t))〉 , is smaller than 3dB. If we

assume that the closest user to the basestation array is at a
distance R meters and that the maximum speed of a user
in the picocell is given by vmax meters per second, then
the maximum change (in terms of the `∞-norm) in spatial
frequency ∆ω between consecutive sounding phases, spaced
1/fB apart, is given by 2πdvmax/fBRλ . The worst-case
geometry which achieves this bound is when the user is at
a distance R along the bore-sight of the array and heading in
a direction aligned with the one of the array axes. For this
worst-case geometry (plotted in Figure 6), we have that:

∆ω ≤ (2πd/λ ) sin ∆θ ≈ 2πdvmax

fBλR
.

Assuming that the estimate ω̂ from the previous sounding
phase is accurate, if we ensure that 2πdvmax/fBRλ ≤
π/Nt,1D , we have that the beamforming losses in the inter-
vening period are smaller than 3dB. This tells us that channel
needs to be sounded often enough so that

fB ≥ 2dvmaxNt,1D/Rλ . (18)

In the following discussions, we use the preceding in con-
junction with (17) to determine the overhead incurred in
estimating the channel using the compressive architecture
proposed herein.
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Fig. 6: Geometry corresponding to maximum change in ωz:
The user moves along the z axis at a speed of vmax in the
time interval 1/fB between two consecutive channel sounding
rounds

VII. SYSTEM DESIGN

We now discuss some key aspects of downlink system
design related to our compressive architecture. We start by
choosing basestation transmit power based on rules set by
regulatory authorities, and then filling in the other details
of the protocol according to the prescriptions laid out in
Section VI. Fixing the mobile array to be 4× 4 (Nr,1D = 4),
we consider two different choices for the base station array
size: 8 × 8 (Nt,1D = 8) and 32 × 32 (Nt,1D = 32). All
arrays are d = λ/2-spaced. The total available bandwidth for
communication and sounding is 2GHz.

A. Transmit power

We fix the effective isotropically radiated power (EIRP)
to 40dBm, consistent with Federal Communications Com-
mission (FCC) regulations for 60 GHz unlicensed transmis-
sion. Accounting for transmit beamforming gain using an
Nt,1D ×Nt,1D array, the total transmit power

P = 40− 20 logNt,1D dBm (19)

which evaluates to 22dBm and 10dBm for Nt,1D = 8 and
Nt,1D = 32 respectively. Assuming that this power is evenly
split among the N2

t,1D transmit elements, the power per trans-
mit element is given by Pe = P − 20 logNt,1D dBm = 40−
20 logNt,1D dBm, which evaluates to 4dBm and −20dBm,
respectively. Assuming that we design each element to operate
at a fixed power, this is also the power per element used in
the beaconing phase, even though the latter does not get the
benefit of transmit beamforming.

B. Communication range

In order to ensure that the SNR for compressive estimation
is adequate over a picocell, we first determine the picocell size
using a nominal communication link budget, and then calculate
the overhead required for successful estimation at that range.
Standard link budget calculations, assuming oxygen absorption
of 16 dB/km, an EIRP of 40dBm and a 4 × 4 receive array
providing directivity gains of 12 dBi, can be used to show
that we can attain a per-symbol SNR of 6dB at a link margin
of 10dB for a symbol rate of 2GHz at a range of 200m. For
omnidirectional free space propagation, the power gain in dB
as a function of range r is given by

GdB(r) = −µr + 20 log10

λ

4πr
(dB)

where µ = 0.016dB/m to account for oxygen absorption.
Note that µ can be increased in order to account for rain.
However, since our purpose is to ensure that channel estima-
tion is successful whenever communication is successful, the
contribution due to GdB(r) cancels out, as we show shortly.
Thus, while the particular value of µ determines picocell size,
we shall see that it does not affect the overhead for channel
estimation.

The SNR per symbol is given by

SNRc(dB) = EIRP (dBm) +GdB(r) + 20 log10Nr,1D
(20)

− 10 log10 (N0Wc)− Lmargin(comm)

where Lmargin(comm) is the link margin (dB) for communi-
cation. Note that 10 log10N0 = −174 + NF dBm over a
bandwidth of 1 Hz, where NF denotes the receiver noise
figure in dB. Plugging in Wc = 2GHz, Nr,1D = 4, and
NF = 6dB, we obtain a per symbol SNR of 7 dB at a range
of r = 100 meters.

C. Channel sounding protocol

Our channel sounding protocol is specified by four param-
eters: (i) bandwidth used by each basestation when sounding
the channel, which we denote by Ws (ii) number of transmit
beacons (or virtual transmit antennas) M (iii) number of
receive measurements per transmit beacon (or virtual receive
antennas) L and (iv) sounding rate fB which determines
how often the channel is sounded. The parameters M,L
and Ws together determine the effective sounding SNR. This
must exceed the ZZB threshold SNR for successful channel
estimation. This gives rise to the condition in 17. Imposing
an estimation link margin Lmargin(est) (dB) and going to the
dB domain, we have

10 log10 (ML/Ws ) ≥ SNRth + Lmargin(est) (21)
+ 10 log10N0 − P −GdB(r)

Adding (21) and (20) and simplifying, we obtain

10 log10 (ML/Ws ) ≥ SNRth − SNRc + Lmargin(est)

− Lmargin(comm) + 20 log10Nt,1D

+ 20 log10Nr,1D − 10 log10Wc

The key take-away is that ML/Ws must be large enough
to compensate for the fact that we do not have the benefit
of beamforming during the sounding phase. Notice that the
range r (i.e., the dependence on picocell size) has cancelled
out. Setting Lmargin(est) = 16dB (we use a higher link
margin for channel sounding to account for power losses due
to randomness of A and B), we obtain

Time taken =
ML

Ws
≥

{
16.34 µs Nt,1D = 8

0.2669 ms Nt,1D = 32.
(22)

We choose the number of transmitter beacons for the 8×8 and
32×32 transmitter arrays based on the geometry preservation
criterion for the transmitter’s spatial channel estimation prob-
lem discussed in Section VI-A. We use M = 24 for Nt,1D = 8
and M = 30 for Nt,1D = 32 by numerically evaluating the
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Fig. 7: Channel sounding and communication phases of the
proposed system

worst-case distortion of pairwise distances relevant for the
channel estimation problem (in Figure 3 we plot the worst-
case distortion as a function of L for a random instance of
A and Nt,1D = 32). Using the receive energy preservation
criterion given in Section VI-B, we choose the number of
receive weights for the 4 × 4 receive array as L = 6. Using
these values for M and L in (22), we obtain that the channel
sounding bandwidth must satisfy

Ws ≤

{
8.8124 MHz Nt,1D = 8

674.34 KHz Nt,1D = 32.

Our specification of the channel sounding protocol will be
complete when we give fB , the rate at which we sound the
channel (see Figure 7) which must satisfy (18). Assuming that
the closest user is at a distance of R = 20m and that the
maximum speed of a user in the picocell vmax is 45 miles
per hour (20 m/s), we have that: fB ≥ 8 Hz for Nt,1D = 8
and fB ≥ 32 Hz for Nt,1D = 32. Choosing the minimum
value for fB , we have that the overhead for our channel
sounding protocol is MLfB/Ws = 0.0131% for Nt,1D = 8
and 0.8542% for Nt,1D = 32.

D. Reuse analysis for channel sounding

We investigate how a sequence of basestations employed
in an urban canyon environment can share resources when
estimating the spatial channel to users in their respective
cells. The envisioned mm-wave system involves alternating
between channel estimation and communication phases as
shown in Figure 7. We assume that channel sounding rounds
across basestations are aligned in time. We now characterize
how the 2GHz spectrum is to be shared in space so as to
limit the effect of interference from neighboring picocells on
channel estimation performance. Such interference manage-
ment is essential in the sounding phase; unlike the highly
directive beams used in the communication phase, compres-
sive sounding beacons are essentially omnidirectional. To see
this, consider the average transmit power along any direction
ω. This is given by Pe ‖Axt(ω)‖2

/
L ≈ Pe ‖xt(ω)‖2 =

PeN
2
t,1D = P , the total transmit power. The approximation

‖Axt(ω)‖2
/
L ≈ ‖xt(ω)‖2 holds when the number of

beacons L is large enough. Therefore, the average energy
per-measurement received by an antenna at a distance r
from a transmitter sending compressive beacons is given by
PG(r), where G(r) = 10GdB(r)/10 = λ2

/(
16π2r2

)
e−νr

(ν = (µ/10) ln 10) is the omnidirectional power gain at
range r. We assume that basestations are deployed regularly
as shown in Figure 8 and that the inter-basestation separation
(along the street) is given by S. Suppose that the reuse factor

is R (i.e, every Rth basestation uses the same slice of the
frequency spectrum to estimate downlink spatial channels).
We assume that for narrow urban canyons, the distance be-
tween a user and all interfering basestations (those that are
allocated the same sounding BW) are well approximated by
{kRfS, k ∈ Z \ {0}}. Thus, the interference power seen by
a single antenna is given by

I = 2×
∞∑
k=1

∑
paths

PG(kRfS) = 8P

∞∑
k=1

G(kRfS),

where we have assumed that there are 4 viable paths between
the interfering basestation and user, each introducing the same
amount of interference as the LoS path. This is a pessimistic
assumption, since NLOS paths are attenuated by larger path
lengths and reflection losses. Plugging in the expression for
G(r), we have that

I =
(
Pλ2

/
2π2R2

fS
2
) ∞∑
k=1

e−νRfSk
/
k2

=
(
Pλ2

/
2π2R2

fS
2
)

Li2
(
e−νRfS

)
,

where Li2(z) =
∑∞
k=1 z

k
/
k2 is the dilogarithm function. The

interference seen per antenna adds to thermal noise to give an
effective per-element noise level of σ2

e = N0Ws+I . Assuming
a worst-case geometry for the user of interest (distance of
S from the basestation) and proceeding as in Section VI-C,
we see that effective Signal to Interference and Noise Ratio
SINReff is given by

SINReff = MLPG(S)
/
σ2
e .

This can be rewritten as

1/SINReff = 1/SNReff + 1/SIReff ,

where SNReff = MLPG(S)/N0Ws and the Signal
to Interference Ratio SIReff = MLPG(S)/I =

MLR2
fe
−µS

/
8Li2

(
e−µRfS

)
. We need to ensure that

SINReff exceeds the ZZB SNR threshold for successful es-
timation. We choose the reuse factor Rf so that we are in the
noise-limited regime by setting

1/SIReff < 0.1× (1/SNRth ) ≈ −10− 16 dB.

Assuming that protocol parameters are chosen so that SNReff
exceeds SNRth, we can ignore interference in SINReff calcu-
lations when

SIReff > SNRth + 10 ≈ 26dB for Nt,1D = 8, 32.

In Figure 9, we plot achievable effective SIRs as a function
of frequency reuse factor Rf for two example systems in
Section VII-C: i.e, 8 × 8 and 32 × 32 arrays with total
number of measurements given by ML = 24 × 6 and
ML = 30 × 6 respectively. As the picocell size S grows,
exponential attenuation due to oxygen absorption (the e−νS

term in the expression for SIReff) helps in attenuating in-
terference and improving SIR for same reuse factor Rf . To
illustrate this we plot SIR as a function of Rf for three cell
sizes S = 50, 100, 200m in Figure 9. We observe that, in order
to ensure SIReff > 26dB, a reuse factor of Rf = 4 is needed
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for S = 50m, while Rf = 3 suffices for S = 200m. Plugging
in the per-basestation sounding bandwidth Ws calculations in
Section VII-C, we see that the overall system-level channel
sounding bandwidth Ws × Rf for a S = 50m picocell is as
small as 8.8124MHz × 4 = 35.2MHz and 674.34KHz × 4 =
2.7MHz for Nt,1D = 8, 32, respectively, which is dwarfed by
the total available bandwidth (2GHz).

VIII. SIMULATION RESULTS

We perform simulations for the two example systems con-
sidered in Section VII (8 × 8 and 32 × 32 transmit arrays).
We report results for the algorithm proposed in Section V and
two feedback strategies: (i) ‘full’: users feedback the measured
virtual channel matrix Y (M × L matrix; L = 6 for both
systems) and (ii) ‘svd’: users feedback the 2 dominant left
singular vectors of Y, scaled by their corresponding singular
values (M × 2 matrix; one-third feedback overhead).

We consider 6 mobile users moving in the urban canyon
at speeds of 20, 3, 15, 1.5, 2.1 and 10 meters per second
(covering both vehicular and pedestrian settings). The height
at which each mobile device is held is in the 1.3−1.4m range.
The basestation is mounted on a lamppost on the pavement
(7 meters from a canyon wall), at a height of 6 meters. The
basestation antenna array is tilted by about 7.5◦ in both the
azimuth and elevation directions so that the boresight of the
array points towards middle of the corresponding cell. This
helps in more accurate spatial frequency estimation: since a
change in direction near the boresight of the array results
in larger changes in spatial frequencies than far away from
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Fig. 10: Six users in the urban canyon moving over the
duration of the 7 second simulation interval. Their positions
at time t = 0 is marked using a �-symbol

the boresight, resolving paths is easier when the array points
towards a direction in which we are likely to see more paths.
We do not model blockage in these simulations, assuming
that the LoS path and the three first order reflections are all
available. Our goal is to estimate and track the K = 4 paths
to all 6 users.
Estimation error: Let T = {ωm : m = 1, . . . ,K} denote
the true spatial frequencies and P = {ω̂n : n = 1, . . . , K̂}
denote the set of estimated spatial frequencies. When the
base station uses one of the estimates in P , say ω̂, to
form a beam, we do not realize the full 20 logNt,1D dB
beamforming gain. A measure of the sub-optimality is the
estimation error ‖ω − ω̂‖2, which we normalize by the DFT
spacing of 2π/Nt,1D to define the following error metric:

∆ω(m) = min
n
‖ωm − ω̂n‖2

/
(2π/Nt,1D ) . (23)

When no true spatial frequency exists near an estimate ω̂, i.e,
when ω̂ is a “phantom estimate”, we will quickly be able to
discard it when we beamform in the direction of ω̂ and find
that the mobile does not receive power commensurate to what
it expects with the 20 logNt,1D beamforming gain.

We plot the Complementary Cumulative Distribution Func-
tion (CCDF) of estimation errors (23) for the two systems
(Nt,1D = 8, 32) in Figure 11a and the Probability Distribution
Function (PDF) of the number of paths estimated K̂ (correct
value is K = 4) in Figure 11b. We have set Pfa = 10−3 to
arrive at τ used in the stopping criterion (13). From Figure 11,
we see that feedback of dominant singular vectors is an
efficient feedback strategy which performs just as well as
feeding back the entire matrix Y, while using only a third
of uplink resources.

Next, in order to evaluate the effect of errors in spatial fre-
quency estimation on beamforming performance, we simulate
a simple scenario in which the transmitter beamforms toward
the strongest estimated path. Figure 12 shows the CDF of the
achievable beamforming gain for an 8× 8 array. While ideal
beamforming requires adjustment of both gains and phases,
suboptimal approaches for RF beamsteering with severely
quantized phase-only control (four phases) have been studied
in our earlier conference paper [25]. We see from Figure 12
that if ideal beamforming were performed with our estimates,
then the SNR loss is less than 0.3 dB. If four-phase control
is used based on our estimates, then the SNR loss is less than
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(a) CCDF of frequency estimation errors with new stopping criterion
for Nt,1D = 8 (left) and Nt,1D = 32 (right)
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.Fig. 11: Two feedback strategies considered: (i) M × 6 matrix Y (‘full’) and (ii) top two dominant singular vectors (one-third
overhead)
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Fig. 12: CDF of beamforming gain achieved by an 8 × 8
antenna array for ideal and quantized beamforming techniques

1 dB. The results for 32× 32 arrays are entirely similar, and
are therefore not plotted here.

Thus far, we have not said anything about channel frequency
selectivity. Our proposed algorithm uses a small segment of
the band to estimate the spatial channel, and the problem of
channel dispersion is not addressed. However, we note that
beamforming using a large array should reduce the effect
of undesired paths, which simplifies the task of equalization.
Figure 13 shows the channel impulse responses for the 32×32
and 8 × 8 antenna arrays for a typical snapshot, when the
transmitter beamforms towards the strongest estimated path.
In our simulated setting, the LoS and ground reflection are
close to each other in terms of both delays and angles of
departure. We see that 8× 8 array fails to resolve them, with
both paths falling into the antenna’s main lobe, while the
32× 32 antenna array, which has smaller beamwidth (4◦ half
power beamwidth), attenuates the undesired tap down to one-
ninth of the desired path. Of course, it is possible to utilize
the channel estimates far more intelligently, potentially with
nulls directed both at strong undesired paths for the mobile of
interest, and at the dominant paths for other nearby mobiles.
The latter can be particularly useful for combating intra-cell
interference when a base station face has multiple antenna
arrays, each communicating with a different mobile.

IX. CONCLUSIONS

We have shown that it is possible to super-resolve mm wave
spatial channels with a relatively small number of compressive
measurements, in a manner that is compatible with coarse
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Fig. 13: Channel impulse response with quantized beamform-
ing towards estimated strongest path for the 8 × 8 (left) and
32× 32 (right) scenarios

phase-only control and RF beamforming. This allows scaling
to a very large number of antenna elements without relying
on channel reciprocity. While our discussion of system design
issues such as link budget and inter-cell beacon interference
is tailored to outdoor 60 GHz picocellular networks, the basic
approach is broadly applicable (e.g., to other bands, and to
indoor environments). An important topic for future work
is comprehensive experimental validation of our compressive
approach, which is based on a simple channel model including
only the dominant rays. At the network level, there are a host
of design issues (e.g., see discussion in [3]). The compressive
approach allows each base station to build up an inventory
of viable paths to nearby mobiles, but there is a huge design
space to be explored on how base stations coordinate using
this information to alleviate the effects of blockage (mobiles
in urban environments can be routinely blocked by pedestrians,
automobiles, trees and other obstacles), and to manage inter-
and intra-cell interference. Optimization of arrays of subarrays
in base station “faces” for communicating with multiple users,
as well as for handling channel dispersion, presents interesting
design challenges.
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APPENDIX

A. Stopping criterion

In this section we derive the CFAR-based stopping criterion
(13). In essence, we wish to determine when the residual
measurements, after subtracting out the contribution due to
the paths estimated thus far, can be explained well enough by
noise, up to a nominal false alarm probability of Pfa.

Under the noise-only hypothesis (i.e., assuming all existing
paths have been detected and subtracted), we have

vl(Pq) ≈ zl zl ∼ CN
(
0, σ2IM

)
l = 1, . . . , L

Recall that we use (9), maximized over an oversampled DFT
grid, to detect a new frequency. For our stopping criterion (13),
we consider the maximum over a DFT grid (this simplifies
analysis and design), and stop if this is lower than a threshold,
as follows:

max
ω∈DFT

1

||x(ω)||2
L∑
l=1

|〈x(ω),vl(Pq)〉|2 ≤ τ (24)

The false alarm rate is the probability that the threshold is
exceeded under the noise-only hypothesis:

Pfa = Pr

{
max

ω∈DFT

1

||x(ω)||2
L∑
l=1

|〈x(ω), zl〉|2 > τ

}
(25)

The noise projections are i.i.d. CN (0, 1) across ω (due to the
orthogonality of the DFT basis) and i.i.d. across measurement
time indices l. Thus,

νl,ω :=
〈x(ω), zl〉
σ||x(ω)||

∼ CN (0, 1)

and the sum of the squared magnitudes across projections is
a Gamma random variable:

µω :=

L∑
l=1

|νl,ω|2 ∼ Gamma (L, 1)

We therefore obtain

Pfa = P

{
max

ω∈DFT
µω >

τ

σ2

}
= 1− P

{
µω0

<
τ

σ2

}N2
1D,t

= 1−
(
γ(L, τ

/
σ2 )
/

Γ(L)
)N2

1D,t

where γ(L, x) =
∫ x
0
tL−1e−t dt is the incomplete gamma

function, and Γ(L) = γ(L,∞) is the gamma function. For
a given Pfa, the threshold τ is now given by

τ = σ2γ−1
(
L,Γ(L)(1− Pfa)1/N

2
1D,t

)
(26)

where γ−1(L, y) denotes the inverse of the incomplete gamma
function with respect to the integral limit x.

B. Complexity analysis

We go over the computations that are needed to maintain
the estimate of one user’s channel over time and point out
portions of the computation phase that can be reused across
users.

The first step involves computing responses to each of the
R2N spatial frequency grids (N = N2

1D,t as the number of
transmitter antennas):

X = {x (ω) = Axt(ω) : ω ∈ Φ} .

This can be efficiently computed using the Fast Fourier Trans-
form in O(MNR2 log(NR)) time and can be shared across
users. Furthermore, the set of responses X can be stored at
the basestation and reused across sounding rounds. Thus, the
cost of computing X is amortized over users in the network
and across sounding rounds.

The next step involves finding the strongest path us-
ing (9) and the corresponding gains. This operation takes
O(MLNR2) time. We then proceed to the refinement stage
which takes O(M(L + N)) time (O(MN) to compute
∂x(ω)/∂ωi and O(ML) for gradient and Hessian compu-
tation).

When multiple paths are present, each path is refined
again for every subsequently detected path. Therefore, the
overall complexity when a new user joins the network is
O(K2)×refinement complexity+K×detection complexity =
O(MK2(L + N) + KMLNR2). In arriving at this scaling,
we use the fact that our algorithm is residue centric and
therefore we keep track of {vl (Pq)}. As a result we can
compute {vl(Pq \ (ω̂k, {ĥk,l}))} in O(LM) time as opposed
to the O(qLM) time that would have been needed if this
computation were to be done directly from {yl}.

When we track the channel using estimates from prior
rounds, we compute the gains {ĥk,l} of the existing spatial
frequency estimates from prior round given by {ω̂k} as
(XHX)−1XHY and this takes O(KM(L + N)) time. We
then refine these estimates using our refinement algorithm in
O(KM(L+N)) time.

Paths that were viable in previous sounding rounds may
be blocked in the current sounding round. To prune out
such paths, we test whether the residual measurements after
the deletion of the under question path satisfy our stopping
criterion. This check takes O(KM(L+N)+MLN) time for
each path and path pruning complexity scales as O(K2M(L+
N)+KMLN). Checking whether a new path exists (stopping
criterion) also costs O(MLN) time. Therefore, the overall
tracking complexity scales as O(KM(KL+KN + LN)) =
O(KMN(L+K)) (since N > K) time.
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